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The ”Why?” and ”What If?” Questions

- Understanding the world around us is an
inherently human endeavor

- Human children explore the world as
scientists do [2, 4]:

- Asking questions
- Forming hypotheses
- Testing hypotheses via interventions [5]

- By adulthood, we have fairly solid causal
intuition about the physical world

2 / 38

May not know causal mechanics of physical world down to functional form

For instance, many adult may not know the Gas laws PV=nRT, but they have a
correct, intuitive—or high-level—understanding of the these relationships just based
on playing with balloons or filling your bike tires as a kid
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The ”Why?” and ”What If?” Questions

- As researchers, we fit regressions all the
time and interpret coefficients

- Take the following, for instance :

Y = α + βx + θz + ε

- When can we interpret β as a causal
effect?
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As researchers, we go a step further. Seek to precisely uncover low-level relation-
ships

Qualitative researchers also perform causal inference

Rather than uncovering functional forms or quantifying effects, seek out entire
causal mechanisms or ”configurations” of variables

So much of what we learn about interpreting regressions through telegraphic read-
ings of the political science literature is simply wrong

Not a criticism of previous generations of scholars, causal inference simply not
taught in most departments until recently

Moreover, causal inference still rarely taught in statistics departments
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The ”Why?” and ”What If?” Questions

What is causality?
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Ask audience to answer this question?

What distinguishes description and prediction from causal inference?

How can we move beyond observation, description, and prediction and towards
answering causal and counterfactual questions?

This talk won’t give you every tool you need to perform causal inference in your
own project from start to finish

Field is much too large for that

Hope is to provide you with the philosophical and logical tool kit to engage this
literature on your own, and prepare you for presentations to come

Relay how I first jumped into this literature, and why starting from ”30,000” feet would
have been better



Outline

- Logic of Causal Inference

- Experiments vs the World

- Potential Outcomes vs Structural Causal Models

5 / 38



Logic of Causal Inference
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Beyond Description

- Causal explanations are ”more than mere descriptions . . . of the observed
data” [1, p. 3]

- Break down phenomena into constituent parts and define how parts interact
to produce emergent behavior (data-generating process) [12]

- Once uncovered, causal mechanisms are powerful

7 / 38

Regression models, by themselves, are just descriptions of data, even if it has a high
R2, BIC, AIC, etc.,
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Beyond Description

We can answer counterfactual questions:
- (Incumbency effect) What would have been the election outcome if the

candidate were an incumbent?

- (Resource curse) What would have been the GDP growth rate without oil?

- (Democratic peace) Would the two countries have escalated conflict
similarly if they were both autocratic?

8 / 38

These are questions about a supposition or imagined state of reality

A different turn of historical events

A real-time intervention

A future event
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Beyond Description

Causal mechanisms allow us to make unbiased
predictions about counterfactual situations and the

effect of interventions [10]
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Must an intervention be something that is manipulable? Or can it represent a given
state, such as a race, gender, height or age? Which camp do you fall into?

We are interested in study the causal effects of non-manipulable effects all the time,
and we do indeed ”manipulate” them in experiments, but only in the abstract. We
cannot manipulate these states for individuals.

There is on-going debate about whether non-manipulable variables can take on
causal interpretation

Worth reading



The Ladder of Causation

Answering causal queries requires more than
observing data. Why?

1. Causal mechanisms are generally
unobservable [8]

2. Data represent single realized outcome of
an intervention (traces of mechanism)

3. Sample does not match the
population/group we want to study

4. Data suggest paradoxical effects

Taken from [1, p. 6]
10 / 38

Reality is a garden of forking paths, we only see one potential outcome of many

We cannot observe all potential outcomes for every individual
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Simpson’s Paradox

Believe the Election Was Stolen

Total

Misinfo
Yes 47% ( 582

1240)

No 60% (456
760)

E[Y |T ]

- Social media data on user
engagement

- Consumers of
misinformation are less likely
to believe the election was
stolen

- Hmm... what is happening?
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We are studying the effect of misinformation on beliefs about the election

Group by party, we see 800 out of 1240 people in sample who were exposed to
misinformation were Democrats vs 440 Reps, so the 30% is up-weighted

Among non-exposed, far more Reps than Dems, so the 72$ is up-weighted

Which ATE is correct? Why and how do you know? Is the sample bad? How do
you know? Where’s the evidence? Everything is based on (plausible) assumptions
(grounded prior knowledge).

Once we wipe the fog from our glasses, all assumptions—about sample size or
otherwise—are rooted in a causal structure, as we’ll see.
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The Ladder of Causation

Layer
(Symbolic)

Typical
Activity

Typical
Question

Example Statistics

L1 Associational
P(y |x)

Seeing What is?
How would seeing
X change my belief
in Y?

What does a speech
tell us about a
politician’s ideology?

Regression /
Model fitting /
MLE

L2 Interventional
P(y |do(x),c)

Doing What if?
What if I do X?

What if we tax
carbon, will GHG
emissions lower?

Experiment /
Natural
Experiment /
Adjustment

L3 Counterfactual
P(yx |x ′, y ′)

Imagining Why?
What if I had acted
differently?

Was it the Russians
that caused Trump
to win?

(Adjustment)

Based on table from [1, p. 8]
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The Problem of Causal Inference

- The layers of the causal hierarchy are
nested

- Generally impossible to draw higher-layer
inferences with only lower-layer information
[1]

- Q: So what ”information” allows us to move
up the ladder?

- A: Causal assumptions

Taken from [1, p. 6]
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What do we mean by ”causal assumptions”?

Where do ”causal assumptions” come from?
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The Problem of Causal Inference

Observed data (L1)

Z

W

X Y

εzyε zx

ε z
w ε

w
yε w

x

εxy

- At L1 we have a variable ”salad”

- In terms of probability, all we know
is P(X ,Y , Z ,W )

- Everything could be related to
everything else

- Best we can do is estimate
associations (correlations)

14 / 38

Explain DAG, nodes are variables, dashed edges represent potential relationships,
arrows indicate direction of effect.

Ask audience member what they study

Imagine R dataframe with these variables, show it to your grandma or child. Does
it mean anything to them? Let them play with some descriptive plots, can they tell
you anything about direction of effects?

Causal assumptions are represented by the absence of relationships (edges)

Assuming NO relationship stricter than the contrary

Intervening frees of of causal assumptions because we know value of X is indepen-
dent (a la randomization)

At L3 we observe some intervention, and want to know what would have hap-
pened had we altered the intervention or possibily some other variable in the sys-
tem.



The Problem of Causal Inference

observed data (L1) +
causal assumptions

Z

W

X Y

- With knowledge + additional
evidence, we assume away some
paths

- Arrows imply conditional
dependencies:
=⇒ P(Y |Z ,X )P(X ,W |Z )P(Z )

- Still no intervention, observed
effect of X on Y depends on Z
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The Problem of Causal Inference

Intervention data (L2)

Z

W

X Y

x=1

- We set the value of X :
do(x = 1)
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The Problem of Causal Inference

Intervention data (L2)

Z

W

X Y

x=1

- We set the value of X :
do(x = 1)

- Causal assumptions rendered
moot

- If X influences Y , then a change in
X will appear as a change in Y

E[Y |X = x1]−E[Y |X = x0] 6= 0
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Simpson’s Paradox Revisited

- What is the effect of misinformation on the
belief that the 2020 election was
fraudulent?

E[Y |T = 1]−E[Y |T = 0] = −0.13
or

E[Y |T = 1,C]−E[Y |T = 0,C] = 0.12

15 / 38

Does partisanship influence consumption of misinformation and belief in stop the
steal? Very plausible, lot of evidence suggests this is the case

However, maybe you think exposure to/consumption of misinfo influences partian-
ship. E.g. friends who used to be progressive, slowly become Republican after years
of consuming conspiratorial content on the internet.

In scenario two, by comparing effects, we see that direct effect of misinformation
is positive, but total effect is negative which suggests that indirect channel through
partisanship is negative. Maybe, for average voter, exposure to misinfo turns then
away from the Republicans because of content and leads them to become more
left-leaning.

Both are plausible, require further validation of causal assumptions
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The Problem of Causal Inference

”The central question in the analysis of causal effects is the
question of identification: can the controlled
(post-intervention) distribution, P(Y = y |do(x)), be
estimated from data governed by the pre-intervention
distribution P(X ,Y , Z ,W )?”

- Pearl (2009, p. 108)
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The Problem of Causal Inference

- Thus, the key to causal inference is achieving identification

- In experiments, identification is built-in since we control the treatment

- In observational data, identification is tougher and, sometimes, unachievable

- So why not only do experiments?
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Experiments: Pros and Cons

Pros
- Identification guaranteed

=⇒ Internal validity

- Greater control over intervention

Cons

- limits, limits, limits...

- ethical
- physical
- temporal
- external validity /

transportability

- Causal mechanism still an
assumption
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e.g. different types of sampling

Can design the experiment to directly assess research question of interest

Ethical example cannot start a war

Physical example limited to phenomena you can examine in a lab or survey

Temporal example many causal chains stretch over long time scales, longitudinal
studies expensive

Transportability highly unlikely that the sample you achieved is perfectly random
and free of selection bias, effects unbiased within the sample, but not population
of interest
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Observational Studies: Pros and Cons

Pros
- Can study phenomena of

interest

- ...in the population of interest

=⇒ external validity

Cons

- Identification challenged by

- selection bias
- non-random treatment
- data limitations

- Identification may be impossible
without more data or
experiment
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Potential Outcomes
vs

Structural Causal Models
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Potential Outcomes

- Associated with Neyman [7] and Rubin [11]

- Widely adopted in social sciences and
medicine

- Randomized experiment serve as its ruling
paradigm
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Potential Outcomes

- Object of analysis is a unit-based response variable
- patients
- survey respondents
- cities

- Comparison between factual and counterfactual for each unit i

- Denoted Yi(Ti)

- ”The value outcome Y would obtain in experimental unit i had treatment Ti
been t”
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Potential Outcomes

- Units: i = 1, . . . ,N

- ”Treatment”:
- Ti = 1 if treated
- Ti = 0 otherwise

- Observed outcome: Yi

- Pre-treatment covariates: Xi

- Potential outcomes: Yi(1) and
Yi(0)

Voters Contact Turnout Age Party ID

i Ti Yi (1) Yi (0) Xi Xi

1 1 1 ? 19 D
2 0 ? 0 45 D
3 0 ? 1 36 R
...

...
...

...
...

...
N 1 0 ? 71 R

24 / 38

For each voter, we only observed one outcome

We cannot simultaneously observe two universes, one where individual i is given
treatment and one where not, then compare



Potential Outcomes Assumptions

Core Assumptions
1. No simultaneity

2. No interference between units

3. Same version of treatment

X Y

25 / 38



Potential Outcomes Assumptions

Core Assumptions
1. No simultaneity

2. No interference between units

3. Same version of treatment

X1 Y1

X2 Y2

25 / 38



Potential Outcomes Assumptions

Core Assumptions
1. No simultaneity

2. No interference between units

3. Same version of treatment

25 / 38



Potential Outcomes Assumptions

Core Assumptions
1. No simultaneity

2. No interference between units

3. Same version of treatment

- Stable Unit Treatment Value
Assumption (SUTVA)

- Potential violations:
- feedback effects
- spill-over effects
- different treatment administration

- Observed outcome is random
because treatment is random

- Multi-valued treatment: more
potential outcomes for each unit
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Potential Outcomes Assumptions

Observed data (L1)

Z

W

X Y

εzyε zx

ε z
w ε

w
yε w

x

εxy

Crux of PO is randomized treatment
- Causal mechanism too complex

to rule out no omitted variable with
certainty

- Looks for ”as-if” random treatments
or proxy treatments

- Allows you to ignore possible
confounders
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Potential Outcomes Assumptions

Intervention data (L2)

X Y

x=1

Crux of PO is randomized treatment
- Causal mechanism too complex

to rule out no omitted variable with
certainty

- Looks for ”as-if” random treatments
or proxy treatments

- Allows you to ignore possible
confounders
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Potential Outcomes Research Designs

- Preferred research designs based on exogeneity assumption:
- Instrumental Variables (IV)
- Regression Discontinuity Design (RDD)
- Difference-in-Difference (DiD)

- When we cannot find intervention data: matching

- Criticisms:
- exogeneity assumption almost always untestable
- finding guaranteed random treatments in the wild is extremely rare
- OR the randomized ”treatment” doesn’t quite align with the theory we want to

test

27 / 38



Structural Causal Models

- Associated with Pearl [8] but many
predecessors and successors

- Emerged from computer science field, but
builds on:

- structural equation models (SEM) [3]
- potential outcomes
- probabilistic graphical models [6, 13]

- The causal graph serves as ruling paradigm

- sometimes referred to as a ”DAG”
(directed acyclic graph)
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Structural Causal Models

- Based on a directed graph that displays casual relationships between
variables

- Models sometimes defined as ordered triples 〈U,V , E〉:
- Exogenous variables U
- Endogenous variables V
- Set of equations E that defining relationships between V

- The models are probabilistic and represent a unique factorization of a joint
probability distribution into conditional probabilities

- Use do-calculus to achieve identification on observed data
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SCM Assumptions

observed data (L1) +
causal assumptions

Z

W

X Y
Ux

Uz

Uy

Uw

f z
w

f zx
fzy

fxy

- The notation seems scary, but we saw this
before

- U are independent of what happens within
the system

- V are dependent on system
- E represents functional relationships

- All assumptions are encoded into the graph
itself

- Since the graph represents conditional
probabilities, we can determine what
variables to adjust for from it

- Theory =⇒ assumptions
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Model Elements

All DAGs are built from three
fundamental relationships
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Model Elements

Chain
- Straight line connections with arrows

pointing from cause to effect

- B mediates effect of A on C

A B C
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Model Elements

Fork
- One cause has multiple effects

- There exists spurious correlation
between A and C due to B

- Eliminate by adjusting for B
A

B

C
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Model Elements

Collider
- Multiple causes affect one outcome

- Conditioning on B often induces a
non-causal negative relationship
between A and C

- Collider bias, wherein B explains
away correlation between A and C

A

B

C

31 / 38



Identification with DAGS

Identification is achieved via do-calculus

- Set of rules for determining a
minimally-sufficient set of adjustment
variables

- Examine all paths between
treatment and outcome, control for
confounders

- Not too complicated, but beyond
scope of presentation B confounds effect of T on Y

T

B

Y
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SCM as a Language

- SCMs represents a language of causality

- All other approaches to causal inference can be encoded in a DAG (i.e. PO
is subsumed by SCM)

- Can also be used to determine when and how to escape from selection bias

- Criticisms:
- Encoding our theory into a DAG can be hard
- Complex theory =⇒ complex DAG

↪→ DAGs can become overwhelming, fast
- do-calculus only guarantees identification if theory is correct

- Dagitty: tool that performs do-calculus for you, has R package too

33 / 38

• Critique of assumption true in all models

www.dagitty.net


Conclusion
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Conclusion
- Randomized experiments are considered a gold standard for causal

inference

- But they are black boxes

- The key to causal inference on observational data is:
- make stronger assumptions about the relationships between variables
- Search for interventional L2 setups that match theory

- In SCM, we do the former and establish whether observational data is
identified; if not, ask is it achievable and how?

- In PO, identifiability is guaranteed so long as we believe intervention is truly
random

- Both require rigorous validation of assumptions

- Once identified, we can interpret β as a causal effect
35 / 38

• All the work goes into developing good identification strategies and
validating that strategy

• Once you achieve identification, there’s still a question of the ”correct”
functional form.
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